# LOGARITHMIC AND MATHEMATICAL TABLES

( WITH USEFUL DATA )

AB

FOR SCHOOLS
AND

**COLLEGES** 



# NAVNEET'S LOGARITHMIC AND MATHEMATICAL TABLES

(WITH USEFUL DATA)

# For Schools and Colleges

|                         | — <b>≯</b> ∤₹ | IIII  | JĽA :   | 7ÅF        |              |    |
|-------------------------|---------------|-------|---------|------------|--------------|----|
| List of Symbols         |               |       |         | •••        | Cover        | 2  |
| Greek Alphabet          |               |       |         | •••        | ,,           | 2  |
| Calculus                |               |       |         |            | ,,           | 3  |
| Conversion Factors      |               |       |         | •••        | "B)          | 4  |
| About the Earth         |               |       |         |            | ,,           | 4  |
| Some Conversion Factors |               |       |         |            | Page         | 2  |
| Algebra                 |               |       |         | •••        | ,,           | 3  |
| Coordinate Geometry     |               |       |         |            | 7,           | 3  |
| Mensuration             |               |       |         | <b>P P</b> | ,,           | 4  |
| Trigonometry            |               |       |         |            | ,,           | 4  |
| Tables:                 |               |       |         |            |              |    |
| (1) Logarithms          |               | 6     | (7)     | Logarithm  | ic Cosines   | 18 |
| (2) Antilogarithms      |               | 8     | (8)     | Logarithm  | ic Tangents  | 20 |
| (3) Natural Sines       |               | 10    | (9)     | Reciproca  | ls           | 22 |
| (4) Natural Cosines     |               | 12    | (10)    | Squares    |              | 24 |
| (5) Natural Tangents    |               | 14    | (11)    | Square Ro  | oots         | 26 |
| (6) Logarithmic Sines   |               | 16    | (12)    | Powers an  | d Factorials | 30 |
| Symbols, Dimensions and | Units         | for P | hysical | Quantities |              | 32 |

**Price: ₹ 18.00** 



# Navneet Education Limited

Navneet Bhavan, Bhavani Shankar Road, Dadar, **Mumbai-400 028.** (Tel. 6662 6565) Navneet House, Gurukul Road, Memnagar, **Ahmadabad-380 052.** (Tel. 6630 5000)

www.navneet.com • e-mail: publications@navneet.com

A 0101

### 1. SOME CONVERSION FACTORS

### 1. Mass and Density:

1 kg = 1000 g  
1 u = 1.661 × 
$$10^{-27}$$
 kg  
1 kg/m<sup>3</sup> =  $10^{-3}$  g/cm<sup>3</sup>

### 2. Length, Area and Volume:

1 m = 100 cm = 39.37 in  
= 3.281 ft  
1 mi = 1.609 km = 5280 ft  
1 in = 2.54 cm  
1 nm = 
$$10^{-9}$$
 m = 10 Å  
1 pm =  $10^{-12}$  m = 1000 fm  
1 Å =  $10^{-8}$  cm =  $10^{-10}$ m = 0.1 nm  
= 100 pm  
1 light year =  $9.46 \times 10^{15}$  m  
1 m<sup>2</sup> =  $10^4$  cm<sup>2</sup>  
1 mL = 1 cm<sup>3</sup> =  $10^{-3}$  L =  $10^{-3}$  dm<sup>3</sup>  
=  $10^{-6}$  m<sup>3</sup>  
1 m<sup>3</sup> =  $10^3$  dm<sup>3</sup> =  $10^3$  L =  $10^6$  mL  
=  $10^6$  cm<sup>3</sup>  
1 L =  $10^3$  mL =  $10^3$  cm<sup>3</sup> = 1 dm<sup>3</sup>  
=  $10^{-3}$  m<sup>3</sup>

### **3.** Time :

$$1 d = 86400 s$$
  
 $1 y = 365\frac{1}{4} d = 3.16 \times 10^7 s$ 

### 4. Angular Measure:

1 rad = 
$$\frac{180^{\circ}}{\pi}$$
 = 57.3° (plane angle)  
 $\pi$  rad = 180° =  $\frac{1}{2}$  rev (plane angle)

### 5. Speed:

$$1 \text{ m/s} = 3.28 \text{ ft/s} = 2.24 \text{ mi/h}$$
  
 $1 \text{ km/h} = 0.621 \text{ mi/h} = 0.278 \text{ m/s}$ 

### 6. Force and Pressure:

1 N = 
$$10^5$$
 dynes = 0.225 lb  
1 ton =  $1000$  kg  
1 Pa = 1 N/m<sup>2</sup> =  $10$  dyn/cm<sup>2</sup>  
1 atm =  $1.013 \times 10^5$  Pa  
=  $1.013 \times 10^5$  N/m<sup>2</sup>  
=  $76$  cm Hg

### 7. Energy and Power:

1 J = 
$$10^7$$
 ergs = 0.2389 cal  
1 kW·h =  $3.6 \times 10^6$  J  
1 cal =  $4.186$  J  
1 eV =  $1.602 \times 10^{-19}$  J

### 8. Magnetism:

$$1 T = 1 Wb/m^2 = 10^4 gauss$$

### MISCELLANEOUS

$$\pi = 3.1416, \ \pi^2 = 9.87, \frac{1}{\pi} = 0.3183$$

$$e = 2.718$$
,  $\log_{10} e = 0.4343$ ,  $\log_{e} 10 = 2.303$ ,  $\log_{e} x = 2.303 \log_{10} x$ 

Gravitational constant,  $G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ 

Universal gas constant,  $R = 8.315 \text{ J/mol} \cdot \text{K}$ 

Avogadro constant,  $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ 

Boltzmann constant,  $k = 1.381 \times 10^{-23} \text{ J/K}$ 

Stefan-Boltzmann constant,  $\sigma = 5.670 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$ 

Speed of light in free space,  $c = 2.998 \times 10^8$  m/s

Elementary charge,  $e = 1.602 \times 10^{-19} \text{ C}$ 

Permittivity constant,  $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$ 

Permeability constant,  $\mu_0 = 1.257 \times 10^{-6} \text{ H/m}$ 

Planck constant,  $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ 

Rydberg constant,  $R = 1.097 \times 10^7 \text{ m}^{-1}$ 

Electron mass,  $m_e = 9.109 \times 10^{-31} \text{ kg}$ 

Proton mass,  $m_p = 1.673 \times 10^{-27} \text{ kg}$ 

Neutron mass,  $m_{\rm n} = 1.675 \times 10^{-27} \text{ kg}$ 

### 2. ALGEBRA

\*  $\log_a x = y \iff x = a^y, \ a > 0, \ a \neq 1, \ x > 0.$ 

 $\log_{a} p = \log_{a} r \cdot \log_{r} p$ 

- \* Sum of first n terms of an A.P. with first term a and common difference d is  $\frac{1}{2}n[2a+(n-1)d]=n\times$  (average of first and last terms).
- \* Sum of first *n* terms of a G.P. with first term *a* and common ratio *r* is  $\frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, (r \neq 1)$

\* 
$$\sum_{r=1}^{n} r = \frac{n}{2} (n+1);$$
  $\sum_{r=1}^{n} r^2 = \frac{n}{6} (n+1) (2n+1);$ 

$$\sum_{r=1}^{n} r^3 = \frac{n^2}{4} (n+1)^2$$

\* If  $f(x) \equiv ax^2 + bx + c$  where  $a \neq 0$ , a, b,  $c \in \mathbb{R}$ , then roots  $\alpha$ ,  $\beta$  of f(x) = 0 are

given by 
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
. Also  $\alpha + \beta = \frac{-b}{a}$ ,  $\alpha\beta = \frac{c}{a}$ .

Roots will be real if  $b^2 - 4ac \ge 0$  and imaginary if  $b^2 - 4ac < 0$ .

- \* Remainder when polynomial P(x) is divided by (x a) is P(a)
- \* Number of combinations of n objects taken r at a time

$${}^{n}C_{r}$$
 or  ${n \choose r} = \frac{n!}{(n-r)! \ r!}$ , where  $n! = n(n-1) \ (n-2) \dots 3.2.1$ 

**Binomial Theorem:** 

$$(1 \pm x)^{n} = {^{n}C_{0}} \pm {^{n}C_{1}}x + {^{n}C_{2}}x^{2} \pm \dots + (-1)^{r} {^{n}C_{r}}x^{r} + \dots + (-1)^{n}x^{n}$$

where 
$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

### 3. COORDINATE GEOMETRY

### (1) Distance formula:

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ , where d is the distance between two points having coordinates  $(x_1, y_1)$  and  $(x_2, y_2)$ .

### (2) Section formulae:

The coordinates of the point which divides the join of  $(x_1, y_1)$  and  $(x_2, y_2)$ 

- (i) internally in the ratio m: n are  $\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$
- (ii) externally in the ratio m: n are  $\left(\frac{mx_2 nx_1}{m n}, \frac{my_2 ny_1}{m n}\right)$
- (iii) in two equal parts (i.e., midpoint) are  $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

- (3) Centroid of the  $\triangle$  ABC where coordinates of A, B, C are  $(x_1, y_1), (x_2, y_2), (x_3, y_3)$  has coordinates  $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$
- (4) Slope of the line containing the segment with end points  $(x_1, y_1)$ ,  $(x_2, y_2)$  is given by :

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{Difference of ordinates}}{\text{Difference of abscissae}}$$
, where  $(x_2 - x_1) \neq 0$ 

(5) Acute angle  $\alpha$  between two lines with slopes  $m_1$  and  $m_2$  is given by  $\tan \alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$  where  $m_1 m_2 \neq -1$ 

Two lines with slopes  $m_1$  and  $m_2$  will be parallel if  $m_1 = m_2$ . Two lines with slopes  $m_1$  and  $m_2$  will be perpendicular if  $m_1m_2 = -1$ .

### 4. MENSURATION

| Geometrical Form                                                | Perimeter                                   | Area                                                    | Volume                  |
|-----------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|-------------------------|
| Rectangle (sides a, b)                                          | 2a+2b                                       | ab                                                      |                         |
| Square (side <i>a</i> )                                         | 4a                                          | $a^2$                                                   |                         |
| Triangle (base <i>a</i> , altitude <i>h</i> )                   |                                             | $\frac{1}{2}ah$                                         |                         |
| Triangle (sides a, b, c)                                        | a+b+c=2s                                    | $\sqrt{s(s-a) (s-b) (s-c)}$                             |                         |
|                                                                 |                                             | $\sqrt{s(s-a) (s-b) (s-c)}$ where $s = \frac{a+b+c}{2}$ |                         |
| Circle (radius <i>r</i> )                                       | $2\pi r$                                    | $\pi r^2$                                               |                         |
| Ellipse (axes 2a, 2b)                                           | $2\pi\sqrt{\frac{a^2+b^2}{2}} \text{ app.}$ | πав                                                     |                         |
| Cylinder (radius $r$ , height $h$ )                             |                                             | $2\pi r(h+r)$                                           | $\pi r^2 h$             |
| Cone (radius $r$ , height $h$ ,                                 |                                             | $\pi r(l+r)$                                            | $\frac{1}{3} \pi r^2 h$ |
| slant height <i>l</i> )                                         |                                             |                                                         |                         |
| Sphere (radius r)                                               |                                             | $4\pi r^2$                                              | $\frac{4}{3}\pi r^3$    |
| Anchor ring (mean radius $R$ , radius of circular section $r$ ) |                                             | $4\pi^2 r R$                                            | $2\pi^2 r^2 R$          |

### 5. TRIGONOMETRY

$$\begin{array}{c|c}
(a) \frac{\sin \theta}{\cos \theta} = \tan \theta \\
\sin^2 \theta + \cos^2 \theta = 1 \\
1 + \tan^2 \theta = \sec^2 \theta \\
1 + \cot^2 \theta = \csc^2 \theta
\end{array}$$

$$\begin{array}{c|c}
\sin (90^\circ - \theta) = \cos \theta \\
\cos (90^\circ - \theta) = \sin \theta \\
\cos (180^\circ - \theta) = \sin \theta \\
\cos (180^\circ - \theta) = -\cos \theta
\end{array}$$

$$\begin{array}{c|c}
\sin^2 \theta = \frac{1 - \cos 2\theta}{2} \\
\cos^2 \theta = \frac{1 + \cos 2\theta}{2} \\
\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}
\end{array}$$

$$\sin (\theta \pm \phi) = \sin \theta \cdot \cos \phi \pm \cos \theta \cdot \sin \phi$$

$$\cos (\theta \pm \phi) = \cos \theta \cdot \cos \phi \mp \sin \theta \cdot \sin \phi$$

$$\tan (\theta \pm \phi) = \frac{\tan \theta \pm \tan \phi}{1 \mp \tan \theta \cdot \tan \phi}$$

$$\sin 2\theta = 2 \sin \theta \cdot \cos \theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$$
;  $\cos 3 \theta = 4 \cos^3 \theta - 3 \cos \theta$ 

$$\sin\,A + \sin\,B = 2\,\sin\left(\frac{A+B}{2}\right) \cdot \cos\left(\frac{A-B}{2}\right)$$

$$\sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \sin \left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \cdot \sin \left(\frac{A-B}{2}\right)$$

If 
$$\tan \frac{x}{2} = t$$
,  $\sin x = \frac{2t}{1+t^2}$ ,  $\cos x = \frac{1-t^2}{1+t^2}$ ,  $\tan x = \frac{2t}{1-t^2}$ 

- (b) In any triangle:
  - (i)  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2 \text{ R (sine rule)},$
  - (ii)  $a^2 = b^2 + c^2 2bc \cos A$  (cosine rule),

(iii) 
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
, (iv)  $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$ ,

- (v) Radius of circumcircle,  $R = \frac{abc}{4\wedge}$  (where  $\triangle =$  area of triangle)
- (vi) Radius of inscribed circle,  $r = \frac{\Delta}{s}$  (where  $\Delta =$  area of triangle)

### Trigonometrical ratios of special angles

| θ     | 0°       | 30°                  | 45°                  | 60°                  | 90°      |
|-------|----------|----------------------|----------------------|----------------------|----------|
| sin   | 0        | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1        |
| cos   | 1        | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0        |
| tan   | 0        | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | ∞        |
| cot   | $\infty$ | $\sqrt{3}$           | 1                    | $\frac{1}{\sqrt{3}}$ | 0        |
| sec   | 1        | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$           | 2                    | $\infty$ |
| cosec | $\infty$ | 2                    | $\sqrt{2}$           | $\frac{2}{\sqrt{3}}$ | 1        |

## **CONVERSION FACTORS**

# Length

| From   | milli-          | centi-    | deci-     | metre     | deca-     | hecto-    | kilo-     |
|--------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| milli- | 1               | $10^{-1}$ | $10^{-2}$ | $10^{-3}$ | $10^{-4}$ | $10^{-5}$ | $10^{-6}$ |
| centi- | 10              | 1         | $10^{-1}$ | $10^{-2}$ | $10^{-3}$ | $10^{-4}$ | $10^{-5}$ |
| deci-  | $10^{2}$        | 10        | 1         | $10^{-1}$ | $10^{-2}$ | $10^{-3}$ | $10^{-4}$ |
| metre  | $10^{3}$        | $10^{2}$  | 10        | 1         | $10^{-1}$ | $10^{-2}$ | $10^{-3}$ |
| deca-  | 10 <sup>4</sup> | $10^{3}$  | $10^{2}$  | 10        | 1         | $10^{-1}$ | $10^{-2}$ |
| hecto- | 10 <sup>5</sup> | $10^{4}$  | $10^{3}$  | $10^{2}$  | 10        | 1         | $10^{-1}$ |
| kilo-  | $10^{6}$        | $10^{5}$  | $10^{4}$  | $10^{3}$  | $10^{2}$  | 10        | 1         |

### **USEFUL DATA**

| Coefcient of linear expansion (°C <sup>-1</sup> ) |                     | Specic heat capacity (in J/kgK, |     |  |
|---------------------------------------------------|---------------------|---------------------------------|-----|--|
| Iron $12 \times 10^{-6}$                          |                     | at 25° C)                       |     |  |
| Copper                                            | $17 \times 10^{-6}$ | Brass                           | 370 |  |
| Brass                                             | $18 \times 10^{-6}$ | Copper                          | 384 |  |
| Aluminium                                         | $23 \times 10^{-6}$ | Iron                            | 449 |  |
|                                                   |                     | Aluminium                       | 897 |  |

# Mechanical equivalent of heat, J = 4.186 J/cal

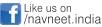
# ABOUT THE EARTH

Polar radius = 6356.8 km, Equatorial radius = 6378.1 km

Mean radius = 6371 km

Volume =  $1.083 \times 10^{21} \text{m}^3$ 

Mass =  $5.972 \times 10^{24} \text{kg}$ 


Mean density =  $5.514 \text{ g/cm}^3 = 5514 \text{ kg/m}^3$ 

Mean distance from the Moon =  $3.84 \times 10^8$  m

Mean distance from the Sun =  $1.496 \times 10^{11}$ m

Gravity at sea level =  $9.80665 \text{ m/s}^2$ (standard)









A 0101